EXERCISESET 3, TOPOLOGY IN PHYSICS

The hand-in exercise is the exercise 2.

Please hand it in electronically at topologyinphysics2019@gmail.com (1 pdf!)
Deadline is Wednesday February 27, 23.59.
Please make sure your name and the week number are present in the file name.

Exercise 1: Maxwell theory and de Rham cohomology. The advantage of formulating
Maxwell’s theory in terms of differential forms is that it now makes sense on any mani-
fold M, not even 4-dimensional! For this we consider the first few terms of the de Rham
complex:

QM) -5 (M) -5 2(M) L ..
As we have seen, the electric and magnetic fields are gathered in a two-form F €
0O?(M), which the homogeneous Maxwell equations require to be closed: dF = 0.

a) Assume that Hj; (M) = 0. Show that for any field strength F there is a “poten-
tial” A € Q}(M) such that F = dA. Show that two potentials A and A + dA,
with A € C®(M) describe the same configuration of the electromagnetic fields,
so that the “configuration space” of possible electromagnetic fields satisfying
the homogeneous Maxwell equations is given by the quotient Q' (M) /dQ°(M).
Elements in dQ)°(M) are called “gauge transformations”.

b) For any manifold M, we write OO, for the space of closed k-forms. Show that
there is a sequence of maps

(%) 0 — Hig(M) — Q' (M)/dQ°(M) — Q2 (M) — Hig(M) — 0.

Explain what are the maps and show that the sequence is exact.

Minkowski space R'? is topologically trivial, so Hig (R'?) = 0 = H3(R'?), and the
sequence (x) amounts to an identification Q2 (R!?) = Q(R?)/dQ°(R!?). In other
words: we may equally well describe the electromagnetic field using the potential A,
as long as we make sure that we use “gauge invariant” observables, i.e., functions
A — O(A) that are invariant under shifts by dQ°(R'3): O(A +dA) = O(A). For a
topologically nontrivial manifold M (already M = R® x S is an example) we no longer
have O3 (M) = Q!(M)/dQO°(M), as the sequence () shows. One of the lessons from
Quantum Mechanics, as witnessed for example by the Aharonov—-Bohm effect is that
the potential A, is more fundamental than the field strength F! Therefore, it is better to

describe Maxwell theory as a action functional on the space of “fields” A € Q' (M).
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c) Let ¢ : S' — M be a smooth closed curve in M. Show that the function
0,(A) := / A, AecQY(M)
v

is a gauge invariant observable. When the field strength F = 0, use de Rham’s
theorem to show that these observables can detect the class in H}p (M).
d) Show that the action functional

S(A) = %HdAHZ — ;/MdA/\*dA

is gauge invariant and variation leads to the vacuum Maxwell equation d x F =
0. (You actually may have done this already last week...)

* Exercise 2: The Hopf fibration. We consider the 3-sphere defined as
$% .= {(z1,22 € C?, |Z1|2 + |Zz|2 =1}

and recall the definition of the complex projective line IP! better known as the Riemann
sphere

Ph:= (C\{(0,0)})/C*
where C* := C\{0} acts by scalar multiplication. Note that S° is given by all pairs of
complex numbers satisfying a certain equation, while P! is given by pairs of complex
numbers (z1,z1) (not both 0) up to a certain equivalence, namely (z1,2z2) ~ (w1, wy) if
there is 0 #£ A € C such that Az; = wy and Az, = w,.

i) The group U(1) = St acts on S° by

(z1,22) ce? = (zleie, zzeie)

Find a smooth map S®/U(1) — P! that allows for a smooth inverse, i.e. show
that S3/U(1) = P
We may compose the map of i) with the quotient map S® — S®/U(1) to obtain a map

7: S — PPL. Recall from the lecture notes of lecture 1 that we had the atlas of P! given
by the charts

U= {[(z1,22)] € P | z1 # 0}
and
V= {[(z1,22)] € P! |z, # 0}.
ii) Find sections U — 7w~ '(U) and V — 7~ 1(V).
iii) Compute the transition function ¢y : UNV — U(1).
(BONUS) Consider the standard (defining) representation of U(1) on C:

and consider the line bundle associated to the Hopf fibration above. Show that
this line bundle agrees with the tautological line bundle over P!.
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Exercise 3: The Hodge-Maxwell Theorem. In this exercise we will define the Hodge
* starting from a general (pesudo-Riemannian) metric ¢ on the oriented manifold M
without using coordinates. Recall that g allows us to define a notion of volume on
the manifold M. The volume of the submanifold B is given as the integral [;vol. In
coordinates vol is given by the formula

vol = y/|gldx! A ... Adx",

where
n
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denotes the absolute value of the determinant of ¢ and the dx’ form a positively oriented
basis. Recall that the coordinate transformation x' — y' is called positive if Detg—’; (the
Jacobian determinant) is positive.
i): Show that the formula for vol above defines an n-form w. Do this by performing
a (positive) coordinate transformation.
ii): The metric g is given by a symmetric non-degenerate bilinear pairing on the
tangent spaces
(v,w) — guv(x)ot0",
for v, w € TyM. Show that we get a C*(M)-bilinear pairing
X(M) x X(M) — C*(M),

where X (M) denotes vector fields.
Note that similarly the maps

(al ﬁ) = gylVI (x) st gﬂpvp (x)“m...yp,gvl,..vp
define a C®(M)-bilinear pairing on QF(M). In fact this is the pairing («, B)
mentioned in the lecture notes.
iii): Assume that M is compact and show that

(p) = [ (0B

defines an R-bilinear, symmetric pairing on Q¥ (M).
iv): Consider p € OP(M), define *p as the n — p form satifying
aAN*xp = (a,B)w
for all « € OP(M) and show that this definition coincides with the coordinate
expression given in the lectures.
Hint: Show first that xp is uniquely defined. To do this note that if a form is 0 around
every point, then it vanishes globally.

v): Show that the adjoint d* of the exterior derivative 4 is given by the formula
*dx.



	Exercise 1: Maxwell theory and de Rham cohomology.
	 Exercise 2: The Hopf fibration
	Exercise 3: The Hodge–Maxwell Theorem

