
EXERCISESET 3, TOPOLOGY IN PHYSICS

• The hand-in exercise is the exercise 2.
• Please hand it in electronically at topologyinphysics2019@gmail.com (1 pdf!)
• Deadline is Wednesday February 27, 23.59.
• Please make sure your name and the week number are present in the file name.

Exercise 1: Maxwell theory and de Rham cohomology. The advantage of formulating
Maxwell’s theory in terms of differential forms is that it now makes sense on any mani-
fold M, not even 4-dimensional! For this we consider the first few terms of the de Rham
complex:

Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ . . .

As we have seen, the electric and magnetic fields are gathered in a two-form F ∈
Ω2(M), which the homogeneous Maxwell equations require to be closed: dF = 0.

a) Assume that H2
dR(M) = 0. Show that for any field strength F there is a “poten-

tial” A ∈ Ω1(M) such that F = dA. Show that two potentials A and A + dΛ,
with Λ ∈ C∞(M) describe the same configuration of the electromagnetic fields,
so that the “configuration space” of possible electromagnetic fields satisfying
the homogeneous Maxwell equations is given by the quotient Ω1(M)/dΩ0(M).
Elements in dΩ0(M) are called “gauge transformations”.

b) For any manifold M, we write Ωk
cl for the space of closed k-forms. Show that

there is a sequence of maps

(?) 0→ H1
dR(M)→ Ω1(M)/dΩ0(M)→ Ω2

cl(M)→ H2
dR(M) −→ 0.

Explain what are the maps and show that the sequence is exact.

Minkowski space R1,3 is topologically trivial, so H1
dR(R

1,3) = 0 = H2
dR(R

1,3), and the
sequence (?) amounts to an identification Ω2

cl(R
1,3) ∼= Ω1(R1,3)/dΩ0(R1,3). In other

words: we may equally well describe the electromagnetic field using the potential A,
as long as we make sure that we use “gauge invariant” observables, i.e., functions
A 7→ O(A) that are invariant under shifts by dΩ0(R1,3): O(A + dΛ) = O(A). For a
topologically nontrivial manifold M (already M = R3× S1 is an example) we no longer
have Ω2

cl(M) ∼= Ω1(M)/dΩ0(M), as the sequence (?) shows. One of the lessons from
Quantum Mechanics, as witnessed for example by the Aharonov–Bohm effect is that
the potential A, is more fundamental than the field strength F! Therefore, it is better to
describe Maxwell theory as a action functional on the space of “fields” A ∈ Ω1(M).
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c) Let γ : S1 → M be a smooth closed curve in M. Show that the function

Oγ(A) :=
∫

γ
A, A ∈ Ω1(M)

is a gauge invariant observable. When the field strength F = 0, use de Rham’s
theorem to show that these observables can detect the class in H1

dR(M).
d) Show that the action functional

S(A) =
1
2
||dA||2 =

1
2

∫
M

dA ∧ ?dA

is gauge invariant and variation leads to the vacuum Maxwell equation d ? F =

0. (You actually may have done this already last week...)

? Exercise 2: The Hopf fibration. We consider the 3-sphere defined as

S3 := {(z1, z2 ∈ C2, |z1|2 + |z2|2 = 1}

and recall the definition of the complex projective line P1 better known as the Riemann
sphere

P1 :=
(
C2\{(0, 0)}

)/
C×

where C× := C\{0} acts by scalar multiplication. Note that S3 is given by all pairs of
complex numbers satisfying a certain equation, while P1 is given by pairs of complex
numbers (z1, z1) (not both 0) up to a certain equivalence, namely (z1, z2) ∼ (w1, w2) if
there is 0 6= λ ∈ C such that λz1 = w1 and λz2 = w2.

i) The group U(1) ∼= S1 acts on S3 by

(z1, z2) · eiθ := (z1eiθ , z2eiθ)

Find a smooth map S3/U(1) −→ P1 that allows for a smooth inverse, i.e. show
that S3/U(1) ∼= P1.

We may compose the map of i) with the quotient map S3 → S3/U(1) to obtain a map
π : S3 → P1. Recall from the lecture notes of lecture 1 that we had the atlas of P1 given
by the charts

U := {[(z1, z2)] ∈ P1 | z1 6= 0}
and

V := {[(z1, z2)] ∈ P1 | z2 6= 0}.
ii) Find sections U → π−1(U) and V → π−1(V).

iii) Compute the transition function ϕUV : U ∩V → U(1).
(BONUS) Consider the standard (defining) representation of U(1) on C:

eiθ · z = eiθz,

and consider the line bundle associated to the Hopf fibration above. Show that
this line bundle agrees with the tautological line bundle over P1.
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Exercise 3: The Hodge–Maxwell Theorem. In this exercise we will define the Hodge
? starting from a general (pesudo-Riemannian) metric g on the oriented manifold M
without using coordinates. Recall that g allows us to define a notion of volume on
the manifold M. The volume of the submanifold B is given as the integral

∫
B vol. In

coordinates vol is given by the formula

vol =
√
|g|dx1 ∧ . . . ∧ dxn,

where

|g| =
∣∣∣∣∣ n

∑
i1,...,in=1

ε i1 ...in g1i1 . . . gnin

∣∣∣∣∣
denotes the absolute value of the determinant of g and the dxi form a positively oriented
basis. Recall that the coordinate transformation xi → yi is called positive if Det ∂xi

∂yj (the
Jacobian determinant) is positive.

i): Show that the formula for vol above defines an n-form ω. Do this by performing
a (positive) coordinate transformation.

ii): The metric g is given by a symmetric non-degenerate bilinear pairing on the
tangent spaces

(v, w) 7→ gµν(x)vµvν,

for v, w ∈ Tx M. Show that we get a C∞(M)-bilinear pairing

X(M)×X(M) −→ C∞(M),

where X(M) denotes vector fields.
Note that similarly the maps

(α, β) 7→ gµ1ν1(x) . . . gµpνp(x)αµ1 ...µp βν1 ...νp

define a C∞(M)-bilinear pairing on Ωp(M). In fact this is the pairing 〈α, β〉
mentioned in the lecture notes.

iii): Assume that M is compact and show that

(α, β) =
∫

M
〈α, β〉ω

defines an R-bilinear, symmetric pairing on Ωp(M).
iv): Consider β ∈ Ωp(M), define ?β as the n− p form satifying

α ∧ ?β = 〈α, β〉ω

for all α ∈ Ωp(M) and show that this definition coincides with the coordinate
expression given in the lectures.

Hint: Show first that ?β is uniquely defined. To do this note that if a form is 0 around
every point, then it vanishes globally.

v): Show that the adjoint d∗ of the exterior derivative d is given by the formula
?d?.
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